Map Grade 7 Practice Test

Grade 7 MAP Math Practice — Extreme Challenge (Harder than Typical Grade 8)

Grade 7 MAP Math — Extreme Challenge (Original Items)

Domains: Ratios & Proportional Relationships (RP), The Number System (NS), Expressions & Equations (EE), Geometry (G), Statistics & Probability (SP). Items are original, designed to be tougher than typical Grade 8 MAP problems, and are not actual test questions.

Overview

  • Challenge tiers: Core (RIT 250–270), Stretch (RIT 270–290), Ultra (RIT 290+).
  • Skills sampled: multistep percent and proportional reasoning, rational operations with complex fractions and exponents, multi-step equations/inequalities and linear models, circles and composite solids with nets and scale, compound/conditional probability and sampling.

Ratios & Proportional Relationships (RP)

Core (RIT 250–270)

Q1. In a proportional table, x: 3, 7.5, 12 and y: 8.4, 21, 33.6. The constant k = y/x is
  • 2.7
  • 2.8
  • 3.0
  • 3.2
RP250–270
Q2. A car goes 156 miles in 2.6 hours. Speed is
  • 58 mph
  • 60 mph
  • 62 mph
  • 65 mph
RP250–270
Q3. 35% of 260 equals
  • 84
  • 90
  • 91
  • 94
RP250–270
Q4. A scale drawing uses 1 cm : 4 m. A segment of 7.5 cm represents
  • 15 m
  • 20 m
  • 30 m
  • 40 m
RP250–270
Q5. After a 12% discount, a jacket costs $88. Original price was
  • $98
  • $100
  • $102
  • $110
RP250–270
Q6. A recipe uses sugar:flour = 3:7. If 2.1 kg sugar is used, flour needed is
  • 4.2 kg
  • 4.9 kg
  • 5.6 kg
  • 6.3 kg
RP250–270

Stretch (RIT 270–290)

Q7. If y = 2.4x, then for x = 7.5, y =
  • 16.8
  • 17.5
  • 18.0
  • 18.6
RP270–290
Q8. The bill is $48. Tip is 18%. Total is
  • $55.44
  • $56.64
  • $56.80
  • $57.24
RP270–290
Q9. From 64 to 80 is a percent increase of
  • 20%
  • 22.5%
  • 25%
  • 30%
RP270–290
Q10. A $100 item is discounted 20%, then increased by 15%. Final price is
  • $92
  • $94
  • $95
  • $96
RP270–290
Q11. Simple interest on $240 at 6% annual rate for 4 years is
  • $43.20
  • $51.20
  • $57.60
  • $60.00
RP270–290
Q12. In y = kx, if (x, y) = (12, 30), then k =
  • 0.4
  • 2
  • 2.5
  • 3
RP270–290

Ultra (RIT 290+)

Q13. The unit price is better for which: 18 oz for $5.04 or 24 oz for $6.00?
  • 18 oz for $5.04
  • 24 oz for $6.00
  • Same
  • Cannot tell
RP290+
Q14. A measurement is 19 cm; actual is 20 cm. Percent error is
  • 4%
  • 5%
  • 10%
  • 20%
RP290+
Q15. 5 notebooks cost $11.75. Cost of 17 notebooks is
  • $38.95
  • $39.95
  • $40.00
  • $41.65
RP290+
Q16. A mixture is 30% juice. How much pure juice to add to 800 mL to make it 40%?
  • 80 mL
  • 120 mL
  • 133 mL
  • 200 mL
RP290+
Q17. A store marks up $32 by 35% then applies a 10% coupon to the marked price. Final price is
  • $38.88
  • $39.50
  • $40.32
  • $41.04
RP290+
Q18. If y varies inversely with x and y = 6 when x = 4, then when x = 12, y =
  • 1
  • 1.5
  • 2
  • 3
RP290+
Q19. Red:blue = 4:11. If there are 300 in total, blue =
  • 176
  • 220
  • 240
  • 264
RP290+
Q20. Successive changes: +25% then −20%. Net percent change is
  • 0%
  • 2%
  • 4%
  • 5%
RP290+

The Number System (NS)

Core (RIT 250–270)

Q21. 0.36 ÷ 0.09 =
  • 3
  • 4
  • 5
  • 6
NS250–270
Q22. 7/8 − 5/12 =
  • 1/6
  • 5/24
  • 11/24
  • 13/24
NS250–270
Q23. (−2)^3 + 5(−1) =
  • −13
  • −7
  • −3
  • 3
NS250–270
Q24. |−8| − |−3| =
  • −11
  • −5
  • 5
  • 11
NS250–270
Q25. 2/3 ÷ 5/6 =
  • 2/5
  • 4/5
  • 5/4
  • 6/5
NS250–270
Q26. 0.27 as a fraction in simplest form is
  • 27/100
  • 3/10
  • 27/90
  • 9/40
NS250–270

Stretch (RIT 270–290)

Q27. (−3)^4 × (−3) =
  • −81
  • −27
  • 27
  • 81
NS270–290
Q28. 5/12 + 7/18 =
  • 2/3
  • 29/36
  • 31/36
  • 5/6
NS270–290
Q29. √65 is between
  • 7 and 8
  • 8 and 9
  • 9 and 10
  • 10 and 11
NS270–290
Q30. (1.2 × 10^3) × (3 × 10^−2) =
  • 3.6 × 10^1
  • 3.6 × 10^2
  • 3.6 × 10^3
  • 3.6 × 10^4
NS270–290
Q31. 0.4 repeating (0.444…) equals
  • 2/5
  • 4/9
  • 1/3
  • 5/9
NS270–290
Q32. |−5 + 2| + |−3| =
  • 0
  • 2
  • 5
  • 6
NS270–290

Ultra (RIT 290+)

Q33. (−1.5)^2 − (−2)^3 =
  • −4.25
  • 3.75
  • 6.25
  • 8.25
NS290+
Q34. 3/5 ÷ 7/10 =
  • 3/7
  • 6/7
  • 7/6
  • 10/21
NS290+
Q35. Evaluate: 2(−3)^2 − 4(−3) + 1
  • 1
  • 13
  • 25
  • 37
NS290+
Q36. Which is greater: −0.7 or −3/5?
  • −0.7
  • −3/5
  • Equal
  • Cannot tell
NS290+
Q37. 1 3/4 × 2 2/5 =
  • 3 1/2
  • 4 1/5
  • 4 1/5
  • 4 3/20
NS290+
Q38. (−2)^0 + 5^0 equals
  • 0
  • 1
  • 2
  • Undefined
NS290+
Q39. 1.2 × (−0.5) − 0.8 × (−0.5) =
  • −1.0
  • −0.2
  • 0
  • 0.2
NS290+
Q40. 3^(−2) equals
  • −9
  • −1/9
  • 1/9
  • 9
NS290+

Expressions & Equations (EE)

Core (RIT 250–270)

Q41. Solve: 4x − 7 = 21
  • 5
  • 6
  • 7
  • 8
EE250–270
Q42. Evaluate: 3(2 + 5) − 4
  • 13
  • 17
  • 19
  • 21
EE250–270
Q43. If x = 2 and y = 3, 2x^2 + y equals
  • 7
  • 9
  • 11
  • 13
EE250–270
Q44. Solve: x/6 = 8/3
  • 12
  • 14
  • 16
  • 18
EE250–270
Q45. Which value satisfies x/3 > 4?
  • 9
  • 12
  • 13
  • 6
EE250–270
Q46. 18 − 2(5 + 1) =
  • 6
  • 8
  • 10
  • 12
EE250–270

Stretch (RIT 270–290)

Q47. Solve: 4x − 3(x − 2) = 19
  • 3
  • 5
  • 7
  • 13
EE270–290
Q48. Solve: 7 − (2x − 3) = 12
  • −2
  • −1
  • 1
  • 2
EE270–290
Q49. If y = 2x + 1, then for x = −3, y =
  • −7
  • −5
  • −3
  • 5
EE270–290
Q50. Solve: x/3 + x/2 = 10
  • 10
  • 12
  • 15
  • 20
EE270–290
Q51. Slope between (−1, 2) and (5, 14) is
  • 2
  • 2.5
  • 3
  • 12
EE270–290
Q52. Evaluate 2(3x − 4) − (x + 5) when x = 3
  • −2
  • 0
  • 2
  • 4
EE270–290

Ultra (RIT 290+)

Q53. Solve: 5 − 2(3x − 4) = 19
  • −2
  • −1
  • 1
  • 2
EE290+
Q54. If f(x) = 2x^2 − x, then f(−3) =
  • 15
  • 19
  • 21
  • 27
EE290+
Q55. Solve the inequality: 3(x − 2) ≤ 2x + 7
  • x ≤ 11
  • x ≥ 11
  • x ≤ 13
  • x ≥ 13
EE290+
Q56. Solve: (x − 1)/5 = (2x + 3)/10
  • x = −5
  • x = 5
  • Infinitely many solutions
  • No solution
EE290+
Q57. Simplify: (3^2)(3^4) ÷ 3^3
  • 9
  • 27
  • 81
  • 243
EE290+
Q58. Solve: (2/3)x − 4 = 5
  • 9
  • 12
  • 13.5
  • 27
EE290+
Q59. The y-intercept of y = −3x + 7 is
  • −7
  • −3
  • 0
  • 7
EE290+
Q60. If 2x − y = 7 and x + y = 5, then x =
  • 1
  • 2
  • 3
  • 4
EE290+

Geometry (G)

Core (RIT 250–270)

Q61. Circumference of a circle with radius 7 (π ≈ 3.14) is
  • 21.98
  • 43.96
  • 153.86
  • 49.00
G250–270
Q62. Area of a circle with diameter 10 (π ≈ 3.14) is
  • 31.4
  • 62.8
  • 78.5
  • 157.0
G250–270
Q63. The complement of 62° is
  • 18°
  • 28°
  • 118°
  • 128°
G250–270
Q64. With parallel lines, angle x is alternate interior to 115°. Then x =
  • 65°
  • 70°
  • 90°
  • 115°
G250–270
Q65. Scale 1 in : 6 ft. A drawing length of 3.5 in represents
  • 18 ft
  • 20 ft
  • 21 ft
  • 24 ft
G250–270
Q66. A right triangle has legs 6 and 8. Its perimeter (with hypotenuse) is
  • 18
  • 20
  • 24
  • 28
G250–270

Stretch (RIT 270–290)

Q67. Surface area of a cube with side 3 is
  • 27
  • 36
  • 45
  • 54
G270–290
Q68. Area of a 12 × 5 rectangle with a semicircle of radius 5 attached on one side (π ≈ 3.14) is about
  • 85.0
  • 94.2
  • 99.3
  • 110.0
G270–290
Q69. Similar triangles have corresponding sides 6→8 and 9→x. Then x =
  • 10
  • 12
  • 14
  • 16
G270–290
Q70. Distance between (−2, 5) and (3, −1) is approximately
  • 6.4
  • 7.8
  • 8.6
  • 9.2
G270–290
Q71. Area of a ring (annulus) with outer radius 6 and inner radius 4 (π ≈ 3.14) is about
  • 31.4
  • 50.3
  • 62.8
  • 78.5
G270–290
Q72. Surface area of a 2 × 3 × 4 rectangular prism is
  • 48
  • 52
  • 56
  • 60
G270–290

Ultra (RIT 290+)

Q73. Arc length of a 60° sector in a circle of radius 12 (π ≈ 3.14) is about
  • 6.28
  • 12.57
  • 18.85
  • 25.13
G290+
Q74. Two complementary angles measure (x + 20)° and (2x + 10)°. The larger angle is
  • 40°
  • 45°
  • 50°
  • 60°
G290+
Q75. A dilation centered at the origin with scale factor 1.5 sends (−4, 2) to
  • (−6, 3)
  • (−5, 2.5)
  • (−3, 1)
  • (6, −3)
G290+
Q76. If a circle has circumference 31.4, then its radius (π ≈ 3.14) is
  • 4
  • 5
  • 6
  • 10
G290+
Q77. A triangle’s side lengths are scaled by a factor of 3. Its area is multiplied by
  • 3
  • 6
  • 8
  • 9
G290+
Q78. A right triangle has a leg of 9 and hypotenuse of 15. The other leg is
  • 10
  • 11
  • 12
  • 13
G290+
Q79. Volume of a cylinder radius 3, height 8 (π ≈ 3.14) is about
  • 75.4
  • 113.0
  • 226.1
  • 452.2
G290+
Q80. Surface area of a cylinder radius 4, height 10 (π ≈ 3.14) is about
  • 175.8
  • 201.1
  • 351.7
  • 402.1
G290+

Statistics & Probability (SP)

Core (RIT 250–270)

Q81. A bag has 4 red and 6 blue marbles. P(red) =
  • 1/5
  • 2/5
  • 1/2
  • 3/5
SP250–270
Q82. How many outcomes are in the sample space for flipping 3 coins?
  • 6
  • 8
  • 9
  • 12
SP250–270
Q83. P(roll > 4) on a fair die equals
  • 1/6
  • 1/3
  • 1/2
  • 2/3
SP250–270
Q84. Mean of 5, 7, 9 is
  • 6
  • 7
  • 8
  • 9
SP250–270
Q85. Relative frequency of success is 18 out of 60. As a percent it is
  • 25%
  • 30%
  • 35%
  • 40%
SP250–270
Q86. Median of 2, 3, 5, 8, 11, 12 is
  • 5
  • 6
  • 6.5
  • 7
SP250–270

Stretch (RIT 270–290)

Q87. In 100 spins, red appears 28 times. An estimate of P(red) is
  • 0.18
  • 0.25
  • 0.28
  • 0.38
SP270–290
Q88. If P(A) = 0.37, then P(not A) =
  • 0.37
  • 0.47
  • 0.57
  • 0.63
SP270–290
Q89. For independent events with P(A) = 0.4 and P(B) = 0.5, P(A and B) =
  • 0.10
  • 0.20
  • 0.40
  • 0.90
SP270–290
Q90. Which is a simple random sample?
  • Survey the math club
  • Ask every 10th student entering school
  • Ask only your friends
  • Ask morning students only
SP270–290
Q91. P(sum is even) when rolling two dice is
  • 1/3
  • 5/12
  • 1/2
  • 2/3
SP270–290
Q92. Toss two fair coins. P(at least one head) is
  • 1/2
  • 3/4
  • 1/4
  • 2/3
SP270–290

Ultra (RIT 290+)

Q93. Without replacement from 5 red and 3 blue, P(two red in a row) =
  • 5/28
  • 5/21
  • 5/14
  • 3/7
SP290+
Q94. Number of outcomes choosing an ordered pair from {A, B, C} × {1, 2, 3, 4} is
  • 7
  • 12
  • 24
  • 36
SP290+
Q95. The mean of 5 numbers is 10. If one value increases by 3, the new mean is
  • 10.3
  • 10.6
  • 11
  • 13
SP290+
Q96. For data 4, 8, 8, 10, 12, the IQR is
  • 3
  • 4
  • 5
  • 6
SP290+
Q97. From a bag with 4 red and 6 blue, P(second red | first blue) =
  • 2/5
  • 4/9
  • 1/2
  • 5/9
SP290+
Q98. A class has 12 girls and 18 boys. Two students are chosen without replacement. P(both girls) =
  • 2/15
  • 22/145
  • 11/145
  • 66/145
SP290+
Q99. The probability of a complement is 0.18. The event’s probability is
  • 0.18
  • 0.32
  • 0.72
  • 0.82
SP290+
Q100. Drawing a number 1–20, the probability it is prime is
  • 1/5
  • 2/5
  • 3/10
  • 1/2
SP290+

Answer Key

1:B, 2:C, 3:C, 4:C, 5:D, 6:C, 7:D, 8:B, 9:C, 10:B, 11:C, 12:C, 13:A, 14:B, 15:D, 16:D, 17:A, 18:B, 19:D, 20:B, 21:D, 22:D, 23:B, 24:C, 25:B, 26:A, 27:A, 28:C, 29:B, 30:A, 31:B, 32:D, 33:D, 34:B, 35:C, 36:B, 37:D, 38:C, 39:D, 40:C, 41:C, 42:B, 43:C, 44:D, 45:C, 46:A, 47:C, 48:D, 49:B, 50:C, 51:A, 52:A, 53:D, 54:C, 55:A, 56:B, 57:B, 58:C, 59:D, 60:C, 61:B, 62:C, 63:B, 64:D, 65:C, 66:D, 67:B, 68:C, 69:B, 70:C, 71:B, 72:C, 73:C, 74:C, 75:A, 76:B, 77:D, 78:C, 79:C, 80:D, 81:B, 82:B, 83:C, 84:C, 85:B, 86:C, 87:C, 88:D, 89:B, 90:B, 91:C, 92:B, 93:B, 94:C, 95:A, 96:B, 97:B, 98:B, 99:D, 100:B

Note: Created for practice and instruction. Aligns to common MAP skill areas but is not affiliated with or endorsed by NWEA.