Map Grade 8 Practice Test

Grade 8 MAP Math Practice (Original Items, Higher Complexity)

Grade 8 MAP Math Practice (Original Items)

Domains: Ratios & Proportional Relationships (RP), The Number System (NS), Expressions & Equations (EE), Geometry (G), Statistics & Probability (SP). Items are original and aligned to common Grade 8 MAP skill areas; they are not actual test questions.

Overview

  • Difficulty tiers: Core (RIT 250–270), Stretch (RIT 270–290), Ultra (RIT 290+).
  • Skills sampled: multistep percent/proportional reasoning, rational operations with complex fractions and exponents, equations/inequalities and linear models, circle measures and composite solids, compound/conditional probability and sampling.

Ratios & Proportional Relationships (RP)

Core (RIT 250–270)

Q1. In a proportional table, x: 4, 7, 10 and y: 9.2, 16.1, 23.0. The constant k = y/x is
  • 2.2
  • 2.3
  • 2.4
  • 2.5
RP250–270
Q2. A car travels 210 miles in 3.5 hours. Its speed is
  • 56 mph
  • 60 mph
  • 62 mph
  • 70 mph
RP250–270
Q3. 18% of 320 equals
  • 54.6
  • 57.6
  • 59.2
  • 64.0
RP250–270
Q4. A scale drawing uses 1 cm : 3 m. A segment of 12.5 cm represents
  • 30 m
  • 35 m
  • 37.5 m
  • 40 m
RP250–270
Q5. An $80 jacket is discounted 15% and then taxed 8%. The total is
  • $72.80
  • $73.44
  • $74.24
  • $75.60
RP250–270
Q6. Sugar:flour = 5:8. If 1.75 kg sugar is used, flour needed is
  • 2.5 kg
  • 2.8 kg
  • 3.0 kg
  • 3.2 kg
RP250–270

Stretch (RIT 270–290)

Q7. If y = 1.6x, then when x = 12.5, y =
  • 18
  • 19
  • 20
  • 22
RP270–290
Q8. From 45 to 54 is a percent increase of
  • 18%
  • 20%
  • 22%
  • 25%
RP270–290
Q9. Successive changes: +30% then −10%. The net percent change is
  • 17%
  • 18%
  • 20%
  • 27%
RP270–290
Q10. Simple interest on $480 at 4.5% annual rate for 5 years is
  • $96.00
  • $102.00
  • $108.00
  • $112.00
RP270–290
Q11. Which is cheapest per ounce?
  • 27 oz for $6.48
  • 24 oz for $5.76
  • 30 oz for $7.20
  • 32 oz for $7.36
RP270–290
Q12. A 12% loss from $250 gives a new price of
  • $215
  • $220
  • $225
  • $230
RP270–290

Ultra (RIT 290+)

Q13. A 25% acid solution of 800 mL is strengthened to 40% by adding pure acid. Amount to add is
  • 80 mL
  • 120 mL
  • 150 mL
  • 200 mL
RP290+
Q14. y varies inversely with x. If y = 9 when x = 6, then when x = 18, y =
  • 2
  • 3
  • 4
  • 6
RP290+
Q15. Scale 1 in : 2.5 mi. A path measures 6.4 in on the map. The actual length is
  • 12.5 mi
  • 15.0 mi
  • 16.0 mi
  • 17.5 mi
RP290+
Q16. In y = kx with k = 3/5, if x increases by 20%, y changes by
  • 12%
  • 15%
  • 20%
  • 25%
RP290+
Q17. Boys:girls = 7:9. If there are 256 students, the number of girls is
  • 112
  • 128
  • 144
  • 152
RP290+
Q18. Convert 90 km/h to m/s.
  • 20
  • 22.5
  • 24
  • 25
RP290+
Q19. A price increases by 18% and then by 12%. The overall single percent increase is closest to
  • 30%
  • 31%
  • 32%
  • 33%
RP290+
Q20. Solve: (x − 4)/9 = 7/3. Then x =
  • 21
  • 22
  • 24
  • 25
RP290+

The Number System (NS)

Core (RIT 250–270)

Q21. 3.6 ÷ 0.12 =
  • 20
  • 30
  • 36
  • 300
NS250–270
Q22. 5/6 − 7/15 =
  • 1/3
  • 11/30
  • 7/30
  • 13/30
NS250–270
Q23. (−4)^3 + 2(−5) =
  • −74
  • −54
  • −44
  • 74
NS250–270
Q24. |−12| − |7| =
  • −19
  • −5
  • 5
  • 19
NS250–270
Q25. 3/4 ÷ 9/16 =
  • 2/3
  • 4/3
  • 3/4
  • 16/27
NS250–270
Q26. 0.045 as a fraction in simplest form is
  • 9/20
  • 9/200
  • 45/100
  • 45/1000
NS250–270

Stretch (RIT 270–290)

Q27. (−2)^4 × (−2)^3 =
  • −64
  • −32
  • −128
  • 128
NS270–290
Q28. 7/9 + 5/12 =
  • 41/36
  • 43/36
  • 1 5/36
  • 1 3/4
NS270–290
Q29. √90 is between
  • 8 and 9
  • 9 and 10
  • 10 and 11
  • 11 and 12
NS270–290
Q30. (2.5 × 10^4) × (4 × 10^−3) =
  • 1.0 × 10^1
  • 1.0 × 10^2
  • 1.0 × 10^3
  • 1.0 × 10^4
NS270–290
Q31. 0.727272… equals
  • 7/9
  • 8/11
  • 9/11
  • 18/25
NS270–290
Q32. |−5 + 2| + |−3| =
  • 0
  • 2
  • 5
  • 6
NS270–290

Ultra (RIT 290+)

Q33. (−1.5)^2 − (−2)^3 =
  • −4.25
  • 2.25
  • 6.25
  • 10.25
NS290+
Q34. 7/10 ÷ 14/25 =
  • 1.2
  • 1.25
  • 1.4
  • 1.5
NS290+
Q35. Evaluate: 3(−4)^2 − 5(−4) + 2
  • 50
  • 62
  • 70
  • 78
NS290+
Q36. Which is greater: −0.66 or −2/3?
  • −0.66
  • −2/3
  • Equal
  • Cannot tell
NS290+
Q37. 2 1/4 × 1 2/3 =
  • 3 1/2
  • 3 3/4
  • 3 5/6
  • 4
NS290+
Q38. (−5)^0 + 2^0 equals
  • 0
  • 1
  • 2
  • Undefined
NS290+
Q39. 1.5 × (−0.8) − 0.7 × (−0.8) =
  • −1.0
  • −0.64
  • 0
  • 0.64
NS290+
Q40. 4^(−2) equals
  • −16
  • −1/16
  • 1/16
  • 16
NS290+

Expressions & Equations (EE)

Core (RIT 250–270)

Q41. Solve: 5x − 3 = 2x + 12
  • 4
  • 5
  • 6
  • 7
EE250–270
Q42. Evaluate: 2(3 + 4^2) − 5
  • 27
  • 31
  • 33
  • 35
EE250–270
Q43. If a = −2 and b = 3, then 2a^2 − 3ab equals
  • 14
  • 20
  • 26
  • 30
EE250–270
Q44. Solve: x/5 + x/3 = 16
  • 24
  • 27
  • 30
  • 32
EE250–270
Q45. Which value is NOT a solution of 7 − 2x > 1?
  • 0
  • 2
  • 3
  • −1
EE250–270
Q46. Solve: 12 − 3(2x − 1) = 3
  • 1
  • 2
  • 3
  • 4
EE250–270

Stretch (RIT 270–290)

Q47. Slope between (−3, 5) and (5, −3) is
  • −2
  • −1
  • 1
  • 2
EE270–290
Q48. The x-intercept of y = −2x + 9 is
  • 3
  • 4
  • 4.5
  • 9
EE270–290
Q49. Solve the system: 2x + y = 11 and x − y = 1. The solution is
  • (3, 4)
  • (4, 3)
  • (5, 1)
  • (6, −1)
EE270–290
Q50. If f(x) = −3x^2 + 2x − 1, then f(−2) =
  • −19
  • −17
  • −13
  • 13
EE270–290
Q51. Solve the inequality: 3(x − 4) ≤ 2x + 1
  • x ≤ 13
  • x ≥ 13
  • x ≤ −13
  • x ≥ −13
EE270–290
Q52. Simplify: 5(2x − 3) − 2(3x − 4)
  • 4x − 7
  • 4x + 7
  • 7 − 4x
  • −4x − 7
EE270–290

Ultra (RIT 290+)

Q53. If g(x) = 2x − 5 and h(x) = x^2, then g(h(4)) equals
  • 11
  • 27
  • 31
  • 37
EE290+
Q54. Solve: (x − 3)/4 = (2x + 5)/10
  • 5
  • 10
  • 15
  • 25
EE290+
Q55. Which equation has slope 3 and y-intercept −2?
  • y = 3x − 2
  • y = −3x − 2
  • y = 3x + 2
  • y = −2x + 3
EE290+
Q56. If 4^x = 64, then x =
  • 2.5
  • 3
  • 3.5
  • 4
EE290+
Q57. Solve: 2/(x − 1) = 1/3
  • 4
  • 5
  • 7
  • 8
EE290+
Q58. Simplify: (a^3 b^2)(a^−1 b^4)
  • a^2 b^6
  • a^4 b^2
  • a^2 b^4
  • a b^6
EE290+
Q59. Solve the system: y = 2x − 1 and y = −x + 8
  • (3, 5)
  • (5, 3)
  • (−3, 2)
  • (3, −5)
EE290+
Q60. Which value is a solution of 5|x − 2| = 20?
  • −2
  • 0
  • 2
  • 4
EE290+

Geometry (G)

Core (RIT 250–270)

Q61. Circumference of a circle with radius 9 (π ≈ 3.14) is
  • 28.26
  • 56.52
  • 81.00
  • 101.79
G250–270
Q62. Area of a circle with radius 7.5 (π ≈ 3.14) is about
  • 150.0
  • 176.6
  • 177.5
  • 185.0
G250–270
Q63. The complement of 73° is
  • 17°
  • 27°
  • 107°
  • 127°
G250–270
Q64. Two angles form a linear pair: (3x + 10)° and (5x − 22)°. Then x =
  • 20
  • 22
  • 24
  • 26
G250–270
Q65. Scale 1 cm : 2.5 m. A drawing length of 18 cm represents
  • 30 m
  • 40 m
  • 45 m
  • 50 m
G250–270
Q66. A right triangle has legs 9 and 12. Its perimeter (with hypotenuse) is
  • 30
  • 33
  • 36
  • 39
G250–270

Stretch (RIT 270–290)

Q67. Surface area of a cube with side 5 is
  • 125
  • 150
  • 175
  • 200
G270–290
Q68. Area of a 10 × 6 rectangle with a semicircle of radius 5 attached on one side (π ≈ 3.14) is about
  • 94.2
  • 99.3
  • 104.0
  • 110.0
G270–290
Q69. With parallel lines, angle x is alternate interior to 132°. Then x =
  • 48°
  • 68°
  • 132°
  • 312°
G270–290
Q70. Similar triangles have corresponding sides 8→14 and 12→x. Then x =
  • 18
  • 20
  • 21
  • 22
G270–290
Q71. Distance between (−6, −2) and (3, 10) is
  • 12
  • 15
  • 18
  • 21
G270–290
Q72. Area of an annulus with outer radius 7 and inner radius 3 (π ≈ 3.14) is about
  • 94.2
  • 113.1
  • 125.6
  • 138.2
G270–290
Q73. Surface area of a 4 × 6 × 9 rectangular prism is
  • 204
  • 216
  • 228
  • 240
G270–290
Q74. Arc length of a 120° sector in a circle of radius 9 (π ≈ 3.14) is about
  • 9.42
  • 12.56
  • 18.84
  • 28.26
G270–290
Q75. A dilation centered at the origin with scale factor 0.5 sends (−8, 6) to
  • (−4, 3)
  • (−8, 12)
  • (−3, 4)
  • (4, −3)
G270–290
Q76. If a circle’s circumference is 62.8, its radius (π ≈ 3.14) is
  • 5
  • 7.5
  • 10
  • 20
G270–290
Q77. When side lengths scale by 2.5, area scales by
  • 2.5
  • 5
  • 6.25
  • 12.5
G270–290
Q78. A right triangle has a leg of 5 and hypotenuse of 13. The other leg is
  • 10
  • 11
  • 12
  • 13
G270–290
Q79. Volume of a cylinder radius 5, height 12 (π ≈ 3.14) is about
  • 785
  • 942
  • 1047
  • 1256
G270–290
Q80. Surface area of a cylinder radius 6, height 8 (π ≈ 3.14) is about
  • 452.4
  • 527.5
  • 565.5
  • 602.9
G270–290

Statistics & Probability (SP)

Core (RIT 250–270)

Q81. A bag has 7 red and 5 blue marbles. P(red) =
  • 5/12
  • 7/12
  • 1/2
  • 7/10
SP250–270
Q82. How many outcomes are in the sample space for flipping 4 coins?
  • 8
  • 12
  • 16
  • 24
SP250–270
Q83. P(roll ≥ 5) on a fair die equals
  • 1/6
  • 1/3
  • 1/2
  • 2/3
SP250–270
Q84. Mean of 6, 9, 11, 14 is
  • 9.5
  • 10
  • 10.5
  • 11
SP250–270
Q85. Relative frequency is 22 successes in 80 trials. As a percent it is
  • 25%
  • 27.5%
  • 28%
  • 30%
SP250–270
Q86. Median of 1, 4, 6, 7, 9, 12, 15 is
  • 6
  • 7
  • 8
  • 9
SP250–270

Stretch (RIT 270–290)

Q87. In 200 spins, blue appears 38 times. An estimate of P(blue) is
  • 0.18
  • 0.19
  • 0.20
  • 0.25
SP270–290
Q88. If P(A) = 0.42, then P(not A) =
  • 0.38
  • 0.42
  • 0.58
  • 0.62
SP270–290
Q89. For independent events with P(A) = 0.35 and P(B) = 0.6, P(A and B) =
  • 0.18
  • 0.21
  • 0.35
  • 0.95
SP270–290
Q90. Which is a simple random sample?
  • Survey the sports team
  • Ask the first 50 students entering
  • Use a random number generator on the whole roster
  • Ask for volunteers after school
SP270–290
Q91. P(sum is odd) when rolling two dice is
  • 1/3
  • 5/12
  • 1/2
  • 2/3
SP270–290
Q92. Toss two fair coins. P(exactly one head) is
  • 1/4
  • 1/2
  • 3/4
  • 1
SP270–290

Ultra (RIT 290+)

Q93. Without replacement from 6 red and 4 blue, P(two red in a row) =
  • 1/6
  • 1/3
  • 2/5
  • 3/5
SP290+
Q94. Number of outcomes choosing a 3-letter code from {A, B, C, D} with repetition allowed is
  • 24
  • 48
  • 64
  • 256
SP290+
Q95. The mean of 8 numbers is 15. If an additional number 24 is included, the new mean is
  • 15
  • 15.5
  • 16
  • 17
SP290+
Q96. For data 2, 4, 7, 9, 12, 13, 15, the interquartile range (IQR) is
  • 7
  • 8
  • 9
  • 10
SP290+
Q97. From a bag with 3 red and 7 blue, P(second red | first red) =
  • 1/5
  • 2/9
  • 1/3
  • 2/7
SP290+
Q98. A class has 14 girls and 16 boys. Two students are chosen without replacement. P(both girls) =
  • 7/30
  • 91/435
  • 7/29
  • 14/435
SP290+
Q99. The probability of a complement is 0.27. The event’s probability is
  • 0.27
  • 0.63
  • 0.73
  • 0.83
SP290+
Q100. Picking a whole number from 1 to 30, the probability it is prime is
  • 1/3
  • 2/5
  • 3/10
  • 1/2
SP290+

Answer Key

1:B, 2:B, 3:B, 4:C, 5:B, 6:B, 7:C, 8:B, 9:A, 10:C, 11:D, 12:B, 13:D, 14:B, 15:C, 16:C, 17:C, 18:D, 19:C, 20:D, 21:B, 22:B, 23:A, 24:C, 25:B, 26:B, 27:C, 28:B, 29:B, 30:B, 31:B, 32:D, 33:D, 34:B, 35:C, 36:A, 37:B, 38:C, 39:B, 40:C, 41:B, 42:C, 43:C, 44:C, 45:C, 46:B, 47:B, 48:C, 49:B, 50:B, 51:A, 52:A, 53:B, 54:D, 55:A, 56:B, 57:C, 58:A, 59:A, 60:A, 61:B, 62:B, 63:A, 64:C, 65:C, 66:C, 67:B, 68:B, 69:C, 70:C, 71:B, 72:C, 73:C, 74:C, 75:A, 76:C, 77:C, 78:C, 79:B, 80:B, 81:B, 82:C, 83:B, 84:B, 85:B, 86:B, 87:B, 88:C, 89:B, 90:C, 91:C, 92:B, 93:B, 94:C, 95:C, 96:C, 97:B, 98:B, 99:C, 100:A

Note: Created for practice and instruction. Aligns to common MAP skill areas but is not affiliated with or endorsed by NWEA.